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Abstract 

Let ,,4 be a coquasitriangular Hopf algebra and 2( the subalgebra of ,,4 generated by a row of a 
matrix corepresentation u or by a row of u and a row of the contragredient corepresentation W. In 
the paper left-covariant first order differential calculi on the quantum group .,4 are constructed and 
the corresponding induced calculi on the left quantum space X are described. The main tool for 
these constructions are the L-functionals associated with u. The results are applied to the quantum 
homogeneous space GLq (N) / G Lq (N - 1). © 1999 Elsevier Science B.V. All rights reserved. 

Subj. Class.." Quantum groups 
1991 MSC: 17B37; 81R50 
Keywords: Quantum groups; Covariant differential calculus 

O. Introduction 

Based on the pioneering work of Woronowicz [19], a beautiful theory of bicovariant 

differential theory on quantum groups has been developed till now. A thorough treatment 

of this theory can be found in Chapter 14 of the monograph [6]. The theory of covariant 

differential calculi on quantum spaces, in contrast, is still at the very beginning and neither 

general methods for the construction of such calculi nor remarkable general results are 

known. Covariant differential calculi have been constructed and studied so far only on a 

few simple quantum spaces [1,3,9-12,16,17]. 

In this paper we are concerned with the construction of first order differential calculi 

(FODC) on subalgebras of a coquasitriangular Hopf algebra ,,4 which are generated by 
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a row of a fixed corepresentation u or by a row of u and a row of the contragredient 

corepresentation u c of-4. Such a subalgebra is a left quantum space of .4  with left coaction 
given by the restriction of the comultiplication. Our method of construction is easy to 

explain: The FODC on the quantum spaces are induced from appropriate left-covariant 
differential calculi on the quantum group .4. The main technical tool for the construction of 

the left-covariant calculi on .4 are the L-functionals associated with the corepresentation u. 

We always try to be as simple and close to the classical situation as possible. Our approach 
has two important advantages: First, because of the close relationship between the calculi 

on the quantum space and on the quantum group the theory of L-functionals and other 

Hopf algebra techniques can be applied to the study of the calculi on the quantum space. 

Secondly, the simplicity of the constructed left-covariant calculi, in contrast to the usual 
bicovariant calculi, might be useful for doing explicit computations. Our guiding example 

are the quantum spheres associated with the quantum group GLq(N) (see [8,15] or [6, 
11.6]). For these quantum spheres a classification of covariant differential calculi has been 

recently given by Welk [ 16]. As an application of our method we describe some of the main 
calculi occuring there as induced from left-covariant calculi on GLq (N). Strictly speaking, 

we derive the left-covariant counter-parts of these calculi, because in [16] right quantum 
spheres and right-covariant calculi are investigated. 

This paper is organized as follows. Section 1 contains some preliminaries and collects 

some notation. In Sections 2 and 3 first order calculi on the left quantum spaces gener- 
ated by a single row of u and u c, respectively, are investigated. Section 4 deals with the 

quantum space generated by a row of u and a row of u c. Four families of covariant FODC 

are constructed and the commutation rules between generators and their differentials are 

explicitly described. The application of the results to the fundamental corepresentations of 
the quantum groups GLq (N) and SLq (N) are discussed in Section 5. In Section 6 another 
interesting FODC on the quantum sphere is obtained from a particular bicovariant (!) cal- 
culus on GLq (N). The left-covariant differential calculi on the quantum groups have been 
so far only auxilary tools for the study of the induced FODC on the quantum spaces. In 
Section 7 the same idea is used in order to construct "reasonable" left-covariant FODC on 

the quantum groups GLq(N), SLq(N), Oq(N) and Spq(N) which are in many aspects 
close to the ordinary differential calculus on the corresponding Lie groups. In particular, 
the dimensions of these calculi coincide with the classical group dimensions. 

1. Preliminaries 

Throughout this paper -4 is a coquasitriangular complex Hopf algebra and r denotes a 
fixed universal r-form of .4 (see, for instance, [7] or [6], Section 10.1 ], for these notions). The 
comultiplication, the counit and the antipode of .4  are denoted by A, e and S, respectively. 
We shall use the Sweedler notation A(a) = a(l) ® a~2) for the comultiplication of .4. Let 
us recall that a Hopf algebra .4 is called coquasitriangular if it is equipped with a linear 
functional r on .4 ® .4 which is invertible with respect to the convolution multiplication 
and satisfies the following conditions for arbitrary elements a, b, c ~ .4: 
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r(ab ® c) = r (a  ® c{1))r(b ® c{2)), 

r (a  ® bc) = r(a(1) ® c)r(a(2) ® b), ( 1 ) 

r(a(l) ® b(l))a(2)b(2) = r(a(2) ® b{2))b{l)a~lt. (2) 

Such a linear form r is called a universal r-form of the Hopf algebra .4. The convolution 
inverse of r is denoted by ~. We shall write r(a,  b) :=  r (a  ® b), a, b E .4. 

i denotes a fixed n-dimensional matrix corepresentation of .4, Further, u = (Uj)i.j= 1 . . . . . .  

that is, u is an n × n-matrix of  elements u l. of  .4 such that 

H 

k and e(u~) = ~ij for i, j ,  = 1 . . . . .  n. = ® uj  

k=l 

We define the L-functionals l y  and the R-matrix ,~ associated with the corepresentation U 
by 

l ? i ( . ) = r ( . @ u S ) ,  lT/(-) ,=-r(u}@" ), /~// := r (u i , , u J ) .  

The Hopf dual of  the Hopf algebra ,4 is denoted by .4 °. The L-functionals !~ i belong to 

.4o. From (1) it follows that 

/ /  

A ( { y )  = Z l ± k ®  I f  k' i, j ,  = 1 . . . . .  n. 
k=l 

These and the following relations will be often used in this paper: 

( l ;  i , u k) = Rlj^ik, (12 i , u/k) = (/~-l)i)  = r(u.i, u)), 

(S( lTi) ,u~))  = {~- I , k i  ' u k ) ) =  ~ki 
~ ' "  ,jl, (S(l]') ,  ;I. 

Formula (2) implies that the matrix/~ and hence also/~-1 intertwine the tensor product 

corepresentation u ® u. 

Suppose that X is a subalgebra X of  .4 such that A(X)  _ .4 ® X. Then X is a left 

X-comdodule algebra or equivalently a left quantum space o f . 4  with left coaction ~0 given 

by the restriction A IX of  the comultiplication of.4.  As in [6], such a subalgebra A" will be 

called a left quantum homogenous space of the Hopf algebra .4. 

Af i r s t  order differential calculus (FODC) over A" is an X-bimodule F equipped with a 

linear mapping d: 2( --+ F ,  called the differentiation, such that: 

(i) d satisfies the Leibniz rule d(xy) = x dy + dx y for any x, 3' E 26, 

(ii) F is the linear span of  elements x dy z with x, y, z E X. 
An FODC F over A' is called left-covariant if there exists a linear mapping • : F -+ 

X ® F such that ~ ( x  dy) = A(x)(id ® d)A(y)  for all x, y c X. For a left-covariant 

FODC F of  X the elements of  the vector space invF = {0 C FlU(r/)  = 1 ® rl} are called 
left-invariant one-forms. A left-covariant FODC F of  2( is called inner if there exists a 

left-invariant one-form 0 ~ i n v F  such that 

dx = Ox - xO, x E X .  
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Let F be a left-covariant FODC on the Hopf  algebra-4 itself such that dim F := dim inv/" 
is finite-dimensional. We briefly recall a few facts from the general theory of these calculi 

(see [2,19] or [6], Section 14.1], for more details) that will be used in what follows. Such 
an FODC F is characterized by a finite-dimensional subspace T of A °, called the quantum 

tangent space of F ,  and there is a canonical non-generate bilinear form (., .) on T x inv_F'. 

If  {Xi ; i 6 I } and {Oi ; i ~ I } are dual bases of  T and inv F with respect to this bilinear form, 
then the differentiation d of  the FODC F can be expressed by 

= ~ a ( i ) X i ( a ( 2 ) ) O i ,  a E da A. (3) 
i 

The commutation relations between the elements of  -4 and left-invariant one-forms of N 

are given by 

: ~a(1) f~(a(2) )Ok ,  a E Oia A, (4) 
k 

where f~ are the functionals on -4 are determined by the equation 

A ( X k )  -- e ~ Xk = y ~  Xi  ~ f~. (5) 
i 

Let ~o : A --+ inv/- '  be the canonical projection defined by w(a)  = S(a(l)) da(2) for a 6 A. 
Then one has 

(X, w(a))  = (X, a) f o r X ~ T  and a ~ A .  (6) 

If F is an FODC of -4  with differentiation d, then/~ := 2( d2( 2( is obviously an FODC 
of the subalgebra 2( with differentiation d [2(. We cal l /~ the induced FODC of the FODC 

F of A. Clearly, if F is left-covariant on the quantum group .4, then so i s /~  on the left 
quantum space 2(. 

Our constructions of  left-covariant FODC on .4 are based on the following lemma. 

Lemma 1. A finite-dimensional vector space T of-4° is the quantum tangent space o f  a 

left-covariant FODC of -4  if and only if X(1)  = 0 and A ( X )  -- e ® X ~ 2( ® -4° for  all 
X E X .  

Proof. [13, Lemma 1], or [6, Proposition 14.5]. [] 

2. Quantum spaces generated by a row of u 

Let 2( denote the unital subalgebra of ,,4 generated by the entries of  the last row of the 
matrix u, that is, by the elements xi :=  u/ ,  i -- 1 , . . . ,  n. Clearly, 2( is a left quantum 
homogeneous space of -4 with left coaction ~o = A [2( determined by 

n 
y ~  i ~O(xi) ~ A(Uin) = Uj ~ Xj, i = 1 . . . . .  n. (7) 

j = l  
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In this section we shall construct an n-dimensional  left-covariant FODC F on the Hopf  

algebra ..4 which induces an FODC F ;c on 2( such that the differentials d x  I . . . . .  dxn form 

a free left 2(-module basis of  F x .  

First we define an FODC F of  .A. Let T x be the linear span of  functionals 

Xi : = o l - l l [ - n l n  n, i =  1 . . . . .  n - l ,  and X ,  : = a - J ( ( / f f n ) Z - e )  

on .A, where ot is non-zero complex number that will be specified by formula (11) below. 

We assume that 

l,] - m - - 0  i f m  < n .  (8) 

Since A (l f f")  = Z i  l?  n ®lff  i, this assumption implies in particular that A ( ln  n) = In n ®lf f" .  

so that l~-" is a character of  the algebra .A (that is, I J ( a b )  = l ~ ( a ) l f f ~ ( b )  for a,  b E A 

and l,~-" (1) = 1). Using the relation A (In n ) = l~ n ® l ,  n we get 

n 

A ( X i ) - e ® X i - - - - Z X j ® l ? J l n  n, i =  1 . . . . .  n -  1, 

j = l  

A ( X , , )  - e ® Xn = Xn ® (In") 2. 

Because of  (8), the latter equations can be written in the compact form 

1l 

A ( X i ) - e ® X i  = Z X i ® l T a l n  ", i =  1 . . . . .  n. (9) 
j = l  

Since obviously X(1) = 0 and A ( X )  -- e ® X E T x ® A ° for all X ~ T x by (9), it follows 

from Lemma 1 that there exists a left-covariant F O D C / "  on A such that T x is the quantum 

tangent space of  C. 

Let us suppose in addition that 

( / j , u J ) = 0  i f  i C j ,  i , j = l  . . . . .  n, (10) 

ot : =  (ISI~", uin) --  ((/fin)Z, u n) _ 1 ~ 0 for i = 1 . . . . .  n - 1. (11) 

We abbreviate c_ : =  (lff n , un). Then we have u = c 2 - - 1. 

For i = 1 . . . . .  n, let Oi denote the left-invariant one-form w(u / )  =_ Y~-k S(uik) du,{ of F .  

The assumptions (10) and (11) imply that ( X j ,  u~,) = ~ij and so by formula (6) that 

( x j ,  oi) = ( x j ,  o.(u~.)) = ( x j ,  ui.) = 8ij (12) 

for i, j = 1 . . . . .  n. In particular we conclude that the functionals Xi  . . . . .  Xn are linearly 

independent, so that the FODC F' is n-dimensional.  Further, (12) shows that {01 . . . . .  O, } 

and {Xj . . . . .  X,} are dual bases of  inv/" and T x ,  respectively. Therefore, comparing (5) 

and (9) and using (4), (7) and (8), we obtain for r, j = 1 . . . . .  n, 

Orxj----Z j -"-n Ukn)OS = . j , , - r  u k ,,l-n um,,~ uk(ls In ' Z Ukl'ts ' m)~ n , n )rYs 
k,s k,m,s 

Z C-1 ^-1 rk j = (R )nsUkOs . 
k,s 

(13) 
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These relations lead to the following commutation role between the one-forms Or and 
elements of  the algebra X: 

t /  

OrX = Z X(1)r(ur, X(2))(ln n, X(3))Os, X ~ X.  (14) 
s=l 

Indeed, if x is the generator xj of X, then the third expression of (13) can be rewritten 
as the right-hand side of  (14). Using the facts that Inn is a character and that r 2 !  is also 

a universal r - form of .4 (see [6, Proposition 10.2(iv)]), one easily verifies that (14) holds 
for a product x ' x"  provided that it holds for both factors x I and x".  Thus, (14) is valid for 

arbitrary elements x of  X. 
Next we turn to the FODC F x of X. 

Proposition 2. 
(i) The FODC F of`4 induces a left-covariant FODC F X  o f  X such that the set { dxl . . . . .  

dxn} is a free left X-module basis o f f  'x .  The X-bimodule structure o f f  x is deter- 

mined by the commutation relations 

n 

dxixj  (lnn' un) Z ^-1 ij = (R )kmxkdxm, i, j = 1 . . . . .  n, (15) 
k,m=l 

or equivalently by 

n 

i -n dxix  = Z r(Um' X(l))X(2)(In ' x(3)) dxm, x ~ X .  (16) 
m=l 

(ii) For the differentiation d o f  the FODC F x o f  X we have 

dx = a -1(Onx - xO,0, x ~ X ,  (17) 

Proof  

(i) First we prove formula (15). Since (Xr, ukn) = 6~r, it follows from (3) that 

dxi du i y ~  i k = UkXr(Un)Or = ZUirOr . (18) 
k,r r 

Using (13), (18) and the fact that R - l  intertwines the tensor product corepresentation 
u ® u, we obtain 

dxixj  y ~  i j i j ^-1 km = UkOkUn = Y ~  C-UkUm(R )ns Os 
k k ,m , s  

:~-- l . i j  k m,, 
~. Z C_t 'kmUnUs tys ~ ^-1 ij . = c _ ( R  )~mx~dxm, 

k,m,s k,m 

which proves (15). Formula (16) can be derived from (15) similarly as (14) was from 
(13). From (15) combined with the Leibniz rule it follows that F x -- X d X X  is equal 
to Lin {x dxi; x E ,9(, i = 1 . . . . .  n}. Suppose that Y~4 ai dxi = 0 for certain elements 
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ai ~- X .  Then we have Y~i,k aiuik Ok = O. Since {01 . . . . .  0,1} is a free left -4-module 

i = 0 f o r k  = 1 ., n andhence Z i , k  aiuikS(u~) = basis of  F ,  the latter yields Y~i ai u k , . .  

aj = 0 for all j = 1 . . . . .  n. Thus, { dxl . . . . .  dxn } is a free left X-module basis of  F x.  
(ii) By (10) and (11) we have c_(R-I)nn ~ = (l~ -n, u~)( l~  n, u n) = 3ks(ls"l , ,  n, u~,) = 3k~,~ 

and c_ (k - J )n~  = c_( l ,~n ,u~)  = 6k, C~ f o r s  = 1 . . . . .  n -  l a n d  k = 1 . . . . .  n. 

Inserting this into (13) using (18) we obtain 

n I 

k=l 

= + (c  - = o, d x j  + x O,1, 

k=l 

which proves (17) in the case x = x j .  Since both sides of (17), considered as mappings 
of  X to F x ,  satisfy the Leibniz rule, (17) holds for all x 6 X. [] 

Remarks .  

(1) Since the lefi-invariant form On ~ F does not belong to the X-bimodule F x ,  formula 

(17) does not mean that the FODC F x is inner. It expresses rather the differentiation d 

of  F x by means of  an extended bimodule in the sense of Woronowicz (see [18]). But 

for the FODC F1 z of the larger algebra Z considered in Section 4 the form 0n is in Ft z 

and makes Fl z into an inner FODC (see Proposition 4 (iii) below). 

(2) If  -4 is one of the coordinate Hopf algebras O (Gq),  Gq = G Lq (N), SLq (N), Oq (N), 

Spq (N), then the conditions (8) and (19) below can be assumed without loss of  general- 

ity. This follows from the particular form of the universal R-matrix for the corresponding 

Drinfeld-Jimbo algebras (see, for instance, [6, Theorem 8.17]). 

3. Q u a n t u m  spaces generated by a row of  u c 

Let y be the subalgebra of  -4 generated by the elements Yi :=  (uC)i, ~- S(u~i ' ), i = 

1 . . . . .  n, of  the last row of  the contragredient corepresentation u c. Then y is a left quantum 

space of  .4 with left coaction ~o = A [ y  given on the generators Yi by 

qg(yi) ~ A ( S ( u n ) )  = ~ S (u{ )  ® yj ,  i = 1 . . . . .  n. 

j = l  

We shall proceed in a similar manner as in Section 2. But the considerations are technically 

slightly more complicated, because we have to deal with square and inverse of  the antipode 

of  A. 
Let fl be a non-zero complex number and let T y be the linear span of  functionals 

Yi := f l - lS ( l+ i ) l t~  n, i = 1 . . . . .  n - 1, 

and 

Y,; :=  f l - l  ((l~Tn)2 - E). 
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We assume that 

l+m n = I n  n = 0  i f m  < n  and 

Similar ly as in  Sect ion 2, we then get 

n 
+i  --n 

= ) 1 .  , 

j = l  
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S(l~n n) = lTn n. (19) 

and T y is the quan tum tangent  space of  a left-covariant  F O D C  F on .A. 

Let us suppose in addit ion that there are numbers  Yi ~ 0, i = 1 . . . . .  n,  such that 

S2(u j )  = y iu jyT l ,  i , j  = 1 . . . . .  n, (21) 

and that 

(l +i, u j )  = 0 for i 5~ j ,  i, j = 1 . . . . .  n,  (22) 

(l+nl+i . n~ (( +n 2 f l : = , - n - n  , u i ) =  I n ) , u ~ ) - l s ~ 0  f o r i = l  . . . . .  n - 1 .  (23) 

We set e : =  (l +n, u n) and 0i : =  w(S- l (un ) )  = Y]4 u[ d S - l ( u ~  ' )  for i = 1 . . . . .  n. Since 

S(ln in)  =lmn n by (19), we have c_ = (ln n, Un n) = c -1 and fl = c 2 - 1. It is straightforward 

to check that (19), (22) and (23) imply  that 

(Yj, rli) = (Yj, s - l ( u n ) )  = 3ij fo r / ,  j = 1 . . . . .  n. (24) 

Therefore,  the F O D C  F y is n -d imens iona l .  F rom (20), (19) and (21) we get 

rlrYJ = Z S(u) )(S(l+s)' S(u~))( lnn'  S(Un'))Os 
k,m,s 

^s .  = Rks S (uj) rls, (25) 
k,s 

for j ,  r = 1 . . . . .  n. The first equali ty combined  with the formulas (S(l+S), .) = r (S( . ) ,  

u s) = ~(., u~) leads to the fol lowing form of  the commuta t ion  relations: 

n 

E s --t/ rlry = yo)~(y(2),  Ur)(l n , y(3))r/s, y E 32. 
s = l  

Let / - 'Y  : =  32 d3232 be the F O D C  on 32 induced by the F O D C  F on  A.  

Proposition 3. 
(i) F y is a left-covariant FODC on 32 with the free left 32-module basis {dy! . . . . .  dyn} 

and with 32-bimodule structure given by the relations 

+n n ~ ~ k y k d y m ,  i , j  1 . . . . .  (26) dyi yj = (l n , u n) = n, 
k , m = l  

i = 1 . . . . .  n,  (20) 
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or equivalently by 

- m -n  dyi v = r(y(1),u i )y(2)(l n ,y(3))dym, y E 3;. 
m=l 

(ii) For any y ~ 3; we have dy = f l - l (Ony - YOn). 

3 1  

(27) 

Proof 
(i) It suffices to prove formula (26). First we note the (24) and (21) imply that 

dyi = ~ S(u)) (rr ,  S(uT))rlr = Z Y"Yr 'S(u~)(I(~' - '  " S (u k))71'. 
k,r k.r 

= Z V,,Vr' S(uf)Or. (28) 
r 

If  r is a universal r-form of .A, then so is r21 and we have ~(a, S(b)) = r(a,  b) and 

r(S(a) ,  b) = ?(a, b), where F21 (a, b) :=  r(b, a)  and a, b E A (see, for instance, [6]). 

Usign these facts and formulas (2) applied to r21, (25), (22) and (21), we compute 

-1 r 
dyiYj = Z YnYr S(u i )o , 'Y i  

r 

Z - 1 r k +n n +s 2 n m n 
= YnYr S(u i )S (u j ) ( l  n , u,,)(l,. , S (uk))u,. dS -j(u,,,) 

k,m,r,s 

= ~ × , , × 7 ' S ( u  r) 
k,m k,s  

\ 

- 1 s n - m 
= ~ C y n y  i S - I ( u  r) Z u r S ( u k ) r 2 1 ( U s  , S ( u ) ) )  

J k,m k.s 

= ~cS(u"O~(S(u)) ,  u" - I "  - '  " Ym i }*i ) d S  (}/nUmYm ) 
k,m 

= ~ " ~ c S ( u n ) ~ ( S ( u k ) ,  2 m n S (u i ) ) d S ( u  m) 
k,m 

= Z c R~iik yk dy.,.  

k m -  (uS, S ( u ~ ) ) )  dS-I(u~Tn) S(uj )u  s r21 

d S - I  (Ultn) 

k,m 

(ii) Smce' ^s. = 6knC" by (22) 6ks(l n I n ,u  k ) = 6 k s f l a  u k. CRkn (l+n,_ n +s ,, = = Un)(l n , u~,) +n +k -n~c~n, ,  
and (23) for s = 1 . . . . .  n - 1 and k = 1 . . . . .  n, it follows from (25) and (28) that 

n -  I 

-1 k cZS(u~)r/n rlnYj = Z YnFk flS(uj)rlk -[- 
k=l 

n 
-1 k = ~ ×~×k ~S(uj )ok  + (c 2 - ~)S(u'])o,, = ~ dyj + Yio,, 

k=l 

which implies the assertion. [] 
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4. Q u a n t u m  spaces generated by a row of  u and of  u c 

i and Yi S ( u n ) ,  Let Z denote the subalgebra of  .4 generated by the elements xi = u n -- 

i = 1 . . . . .  n. That is, Z is the subalgebra o f . 4  generated by the algebras X and y .  Our aim 

in this section is to construct four classes Fj z ,  j = 1, 2, 3, 4, of  left-covariant FODC of Z.  

First let us fix some notations and assumptions which will be kept in force throughout 

the whole section. Let Zn be a fixed group-like element of  .4°, that is, Zn(1) -- 1 and 
A(Zn)  = Zn ® Zn. Then Zn is invertible in -4o with inverse Zn I = S(Zn).  We retain the 

assumptions (10), (19), (21) and (22). In addition we suppose that 

• - n  (S(l+ni),  u J)  = (l i , S -1  (u~l)) = 0 for (i, j )  5~ (n, n), i, j = 1 . . . . .  n, (29) 

y : = ( l S l  +n,u i )  5~0 and ¢ : = ( l ~ n l  +i ,u  n ) % O  

are independent of  i = 1 . . . . .  n - 1, (30) 

+n  (1 n , u ~ ) = ( l n  n , u ~ ) = ( Z n , u  j ) = ( Z n  l , u 7 ) = 0  i f / ¢ n ,  (31) 

6 :=  (Zn, Un n) 5~ 1. (32) 

Clearly, we then have 6-1 = (Z  n- l , un).n 
We now begin with the construction of  the FODC F1 z .  Let T1 z denote the linear span of  

functionals 

Xi  ;=  y-16-1lTnl+nZn and Y/ : =  (-l~S(l+ni)l+nnZn, i ---- 1 . . . . .  n - 1, 

Xn : = ( 6  - 1 ) - l ( z n  - s )  and Yn :=  - 6 X n  = (3 -1 - 1)- l (Zn - e ) .  

For i = 1 . . . . .  n - 1, we have 
n-- l  

A(Xi )  -- E ~ X i = Z Xj  ~ l j l + " Z n  + Xn ® (~ - 1)Xi, (33) 
j = l  

n - I  

A(Yi)  -- e ® Yi = Z YJ ® S(l+i)lnnZn + Yn ® (6 -1 -- 1)Yi, (34) 
j = l  

A ( X n )  -- e ® Xn = Xn ® Zn, A(Yn) -- e ® Yn = Yn ® Zn. (35) 

Therefore, by Lemma 1, there exists a left-covariant FODC F1 on ,4 with quantum tangent 
space Ti z .  As in Sections 2 and 3, we set 

Oj :=  w(u j )  and r/j :=  o9(S -1 (u~)), j = 1 . . . . .  n, 

for the FODC Fl. From the assumptions (10), (22), (29), (31) and the definition of  the 

functionals Xi,  Yi we immediately derive 

(Xr, u s) = (Yr, S -I  (un)) = 6rs, (Xi,  S -1 (uT)) = (Yi, u/)  = 0 (36) 

and so 

(Xr, 0s) = (Yr, Os) = 6ks and (Xi,  rlj) = (Yi, Oj) = 0 

for all i, j ,  r, s = 1 . . . . .  n such that (i, j )  ~ (n, n). That is, {01 . . . . .  0n, 01 . . . . .  r/n-I } and 

{Xl . . . . .  Xn, Yl . . . . .  Yn-1} and likewise {01 . . . . .  On-l, Ol . . . . .  rln} and {XI . . . . .  Xn-1,  
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YI . . . . .  Yn } are dual bases of  inv F1 and ~ z ,  respectively. In particular, we see that the 

FODC Fl has the dimension dim ~ z  = 2n - 1. Moreover, the latter facts imply that for- 

mulas (18) and (28) hold for the differentiation d of  the FODC/ '1  as well. Further, from 

the formulas (4) and (33)-(35) we obtain the following commutation relations between the 

basis elements of  invFl and elements a c .4: 

n--I n - I  

Ora Z - r  +n = a(j)(l s l n Zn,a(2l)Os ~sa Z a (  +s +n , = 1)(S(lr fin Zn,a~2))O~,., (37) 
s = ]  s = l  

D - -  [ 

Ona = a(l)( Zn, a(2))On + (8 -- 1) Z a(l) ( ( Xs, a(2))Os + (Y~, a(2))Os), (38) 
s =  I 

n - -  1 

o.a = a(~)(Zn, a(2))0~ + (8 - l  - 1) Z a ( 1 ) ( ( X s ,  a(zl)Os + (Y,., a(e))0s) (39) 
'~'=1 

f o r r  = 1 . . . . .  n - 1. 
Let Fl z denote the FODC of Z which induced by the FODC F1 of  .4. 

Proposition 4. 
(i) For the Z-bimodule F'lz we have the commutation relations 

dx ix  j = c8 ~ ( g - l ) ~ m X  k dxm -k- (8 - y8  - l ) ( x i  dxj  - xiXjOn), 

k,m=l 

dyiYj = C-18 -I ~ Rrflkyk dym -k- (8 -1 - ~ - I  _ 1)(yi dyj - YiYirh,), 

k,m=l 
n 

d x i Y j = C - 1 8 - 1  Z ^ki Rmj Yk dxm + (8 - 1) (xi dyj - xi yj On), 
k,m=l 

dyixj  = c8 (R )~mXk dy,,, + (8 -1 - 1)(yi dxj - YixiO,7), 
k,m=l 

"-  ' r(u~, S2(um)), i, j ,  k, m n. where (R )t~m := = 1 . . . . .  
(ii) The set { dxl . . . . .  dxn, dy! . . . . .  dyn } generates FI z as a left Z-module.  For arbi tra~ 

elements al . . . . .  an, bl . . . . .  bn ~ Z,  the relation 
?l 

Z ( a i  dxi + bi dyi) = 0 (40) 
i=1 

is equivalent to the following set o f  equations: 

a j =  aixi yj, b j =  bixi xjyjyn -1 f o r  j =  1 . . . . .  n, (41) 

11 tl 

4 -n  n 
y ~  aixi = (l n , u n) ~~ biYi. (42) 
i=l  i=1 
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(iii) FIZ is an inner FODC of Z with respect to the lefi-invariant one-form On = -aOn, 
that is, we have 

dz = ( 6 -  1)-l(Onz-- ZOn) f o r z  E Z.  (43) 

Proof (i) We carry out the proofs of  the second and the fourth relations and work with 

the dual bases {0j . . . . .  On-l, 0J . . . . .  0~} and {Xl . . . . .  X~- l ,  Y~ . . . . .  Yn}. The two other 
relations follow by a similar slightly simpler reasoning. Using formulas (35), (37), (39) and 

the above assumptions we compute 

dyi Yj = Z YnYrl S(ur )rlrS(uy ) 
r 

ii- I 
~-~ --1 r k +s +n s , u n . .  = - Z  z...a YnYr S(ui)(S(uj)S(Ir )ln Zn, t, k))Os 

r = l  k , s= l  

n - I  n 

+ ~ ~ S(uT)S(u))(~ -1 - 1)((Xs, S(u~))Os + (rs, S(u~))rls) 
s = l  k=l  

n 

+ S__, 
k=l 

= ~ Yn}*~lg(u~)S(uk)a-lc-l(lr+S, S2(u~))rls 
k,r,s=l 

+ S ( u ~ S ( u ~ ) ( a  -~ - 1 - ~a-~)(Ys, s ( u ~ ) ) ~ , .  

s = l  k=l  

The first sum is treated as in the proof  of  Proposition 3. In this manner it becomes equal 

to c- ta  -1 Z k , m  R~ikYk dym. Put ~ := ¢6 -1 + 1 - •-1. Since (Ys, S(u~)) = ynyZl(Y,,, 

S - I ( u ~ ) )  = }'nYklt~ks by (34) a n d  y n y Z l o k  = Y n ~ k l o ) ( S - l ( u ~ ) )  = Z r  S2(urk)dS(unr), 
the second expression yields 

n--I 

k=l 
n 

= ~S(uT)S(uj')O n -- ~ ~S(uT)S(uk)S2(ttrk)dS(un) 
k,r=l 

= ~YiYjOn -- gYi dyi. 

Putting both terms together we obtain the second relation. In order to prove the fourth relation 
we proceed in a similar manner. Using the facts that (S (/n'~)/+~ Zn, u~) = ~ a-1 (y,,, u ~) = 0 

and (Xs, u~) = ~ks for s = 1 . . . . .  n -- 1, we obtain 

n-I ~ 
dyixj = ~_.~ ~nyZI s(ur)u~ (S(lr+S)l+n n gn, ukn)Os 

r = l  k , s= l  
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77-- 1 

+I2 

k = l  

± 

n 

- 1 ) ( ( x s ,  + (y, , ,  
k = l  

35 

i i 

~--~(~.~. - a b ~ s ( . ~ ) )  = o .  

i 

Multiplying Y~i ai Uir by S(ur~,) and Y~i bi S(u~) by S 2 (u~) = Yk Y;-lu~ and summing over 

r, (44) implies (41). Formula (45) is nothing but (42). Using the r e l a t i o n s  ~ i  Y iXi = 

Z i  x i Y i Y i ~ l z  -1 = 1, (41) in turn implies (44). 

(44) 

(45) 

-1 r j m ^-l),k,~ d S - I  = c~YnYr S(ui)uku s (R (unz) 
k,m,r ,s= I 

n [ 

+ ~ ( ~ - i _  1)S(uT).~Ok 
k = l  

- 1  r k s -  j - I  
~- ¢ ~ n Y r  S ( u i ) U r g n F ( U s ,  u k m ) d S  (u~) 

k ,m,r ,s= I 

i1 

_ ( ~ - 1  _ 1)S(un)u~071 + ~ ( ~ - ,  _ n)s(.~').~o~ 
k=l 

= S"(u k )) dS -  (S-(um)) 
k,m,r ,s=l  

-- (6 -1 -- 1)yiXjOn + (6 -1 -- 1)yi dxj 
tl 

= Z c6(k - )~Jxs  dym + (3-J - 1)(yi dxj - yixjOn). 
m. S = ] 

(ii) Since 0,, = ~ i  Yi dxi and tin = ~ i  YnYi-l xi dyi, the four relations in (i) imply that 
the set { dxl . . . . .  dx~, dyl . . . . .  dyn } generates Fi z as a left Z-module.  It remains to verify 

that (40) is equivalent to (41) and (42). Since X~ = -3Yn, the element S-J  (u~)7' + gu n is 

annihilated by the whole quantum tangent space Tiz and hence 0 = w(S- I (u~)  + 3u~) = 
~,, + 30~. Inserting the relations ~, = -30~, (18) and (28) into (40) we see that (40) reads as 

• i c2biS(ul ~))On = O. (a~U~rOr + biYnYrl S(uri )rlr) "4- (aiu n - 
i = 1  

Since the set {01 . . . . .  0,1, ~l . . . . .  ~ - I  } is a free left N-module basis of Fl z the latter is 

equivalen to the relations 

Z a i u i  r = Z b i S ( u r i ) = O  f o r r =  1 . . . . .  n - 1 ,  
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(iii) It suffices to prove (43) for the generators z = xi, Yi. Because (Ys, u~) = 0 and 

(Xs, u~) = 8j,~ for s = 1 . . . . .  n - 1, it follows from (38) and (18) that 

n - I  

Onxi = uin(Z,, u~)On + (8 - 1) Z u~sOs" 
s = l  

---- Uin(8 -- (8 -- 1))0. + (8 - l )  ~ uisOs 
s = l  

: XiOn -+- (8 -- 1) dxi ,  

which gives (43) in the case z = xi. Similarly, using formulas (39) and (28) we get dyi = 

(8 -1 -- 1)-l  (rlnYi -- YiOn), SO that dyi : (8 - 1)- l  (OnYi - yiOn). [] 

Next we turn to the FODC F4 z on Z .  We take the linear span T4z of  functionals 

X i : = y - I l S l  +n and Y i : = ( - J S ( l + i ) l  +n, i = 1  . . . . .  n - l ,  

Xn = ( 6 -  1 ) - l ( Z n  - e )  and Yn = (8 -1 - 1 ) - l ( Z n  - e ) .  

For i = 1 . . . . .  n - 1, we then have 

n- I  

A(X i )  -- e ® Xi = Z Xj  ® l/-Jl+~ n, A(X, , )  -- e ® Xn = Xn ® Zn, (46) 

j = l  

n - I  

e ® ri = Z rJ ® S(l} -i)l+n' A(Yn) -- e ® Yn ---- Yn ® Zn, (47) A(Yi)  
j : l  

X These formulas and the relations (Xi,  t /y)  = (Yi, S - l ( u ; ) )  = 8ij and ( i ,  S ( U k ) )  = 

(Yi,u~) = 0 f o r i ,  j = 1 . . . . .  n a n d k  = 1 . . . . .  n -  1 imply that T4z is the quan- 

tum tangent space of  a (2n - 1)-dimensional left-covariant FODC /'4 of  ..4. The 

commutation relations of  this FODC between the one-forms Or, rls and elements of  ..4 are 

n - I  

Ora : Z a(1)(1,~-rl+n' a(2))Os, 

s : l  

n - I  

rlra : Z a(l)((S(lr+S)l+" a(2))r/s, 
s : l  

Ona = a( l ) (Zn ,  a(z))On, rlna = a( l ) (Zn ,  a(z))r /n 

for r, s = 1 . . . . .  n - 1. Let F4 z denote the FODC of  Z which is induced by the F O D C / ' 4  

of.A. By similar computations as carried out above one proves the following commutation 

relations of  the Z-b imodule  F4z: 

d x i x  j = c ~ ( g - l ) i J ) k m X  k dxm -- yXi dxj + }.'XiXjOn, 

k,m=l 
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II 

dy~/ =c -~ y ~  k~kykdym -- ~y~ dyj + Cy:yjo., 
k , m = l  

dxiYj  c -1 ^ki 
= Rmj Yk dxm, 

k,m=l 

dyixi = c ~ (R-)UmXk dym. 
k,m=l 

Thes are precisely the relations which are obtained by setting formally 6 = l in the com- 

mutation relations for the FODC Fiz (see Proposition 4(i)). That is, the FODC/ ' 4  z can be 

viewed as the limit of the FODC /~1 z as 8 ~ 1. Note that the FODC 1-'1 z has no direct 

meaning in the case 6 = 1. 

By "mixing" the elements of  the quantum tangent spaces of  the FODC FI and/"4 one 

obtains two other FODC on Z.  We briefly describe the quantum Lie algebras of the corre- 

sponding FODC F2 and F~ of,A and the commutation rules of these calculi. Let T, z be the 

linear span of  functionals 

. - l c - l l - - n l + n  
Xi  : =  2/ o t i t n Zn 

Xn : =  (6 - 1) - l ( z n  - e) 

and ~ z  the span of  functionals 

. - l l - n l + n  Xi :=  ?" i 1~ and 

X,, :=  ( 8 -  1 ) - l ( Z , , -  e) 

a n d  Yi : =  ~ -1S(l+i]l+n i = 1,  n - -  1. 
- -  \ - g l  z - I 1  " . . . .  

and Y. :=  - 3 X , ,  = (6-J - 1 ) - t ( Z n  - e ) ,  

- I  +i  +n Yi := f f  8S(l n )l,, Zn, i =  1 . . . . .  n - l .  

and Y. :=  -3XI, = (6 - I  - 1)-l(Z,,  - e). 

From the formulas (33). (34). (46) and (47) we see that T2 z and T3z are quantum tangent 

spaces of  (2n - 1)-dimensional left-covariant FODC F2 and F3 of  ..4, respectively. From 

these formulas we also read off the following commutation relations between the left- 

invariant one-forms Oi, ~ and elements a ~ ~4: 

n - -  1 n - -  I 

/'2: Ora Z a(l)(lsrl+nZn,a(2,)Os, rlsa= Z a (  1 +s +n = )(S(I,. )l,, , a(2))r/s, 
s= ]  s = l  

n - -  1 

O.a = a~t)(Zn, a(2))O. + (6 - 1) Z a(ll(Xs, a(21)0,,, 
s = l  

n - -  1 

~na = ad)(Zn, a(2))~n + (3-I  _ 1) ~ a(l~(X~, a(2~)O., 
s = l  

n - 1  t l -  1 

-/-'3: Ora = Z a ( ,  :,-r,+n = Za(l)(S(l+S)l+nZn,a(2))rL ' )tts % ,a(2))Os, ~Tsa 
s = l  s--I  

H--  1 

O.a = a(1)(Zn, a(2))On + (8 - 1) Z ao)(Y~' a~2))rL,., 
s = l  



38 K. Schmadgen/Journal of Geometry and Physics 30 (1999) 2347 

n-1 

rlna = a(1)(Zn, a(z))0n q (3 -1 -- 1) y ~ a ( 1 ) ( Y s ,  a(2))0s, 
s = l  

where r = 1 . . . . .  n - 1. As earlier, the FODC on Z induced by the F O D C / 3  on .4  is denoted 

by Fj z ,  j = 2, 3. From the preceding set of  formulas one gets the following commutation 

rules for the Z-bimodule FjZ: 

IF'?: dx ix  j = c~ ~ (R- l )~mX k dx m + (¢~ - ),'3 - 1)(xi dxj - xixjOn), 
k,m=l 

n 

dyiYj = c  - !  y ~  R~iikYkdym - ~Yi dyj + ~yiYjrln, 
k,m=l 

dxiyj c- l~ -1 = Rm ĵki Yk dxm, 
k,m=l 

" -  ij 
dyixj  = c (R )kmXk dym -+- (6-1 _ 1)yi dxj 

k,m=l 

r3z: d~ix:=c £ ([¢-l)~Jmxkdxm - ~'xidx: + ×x~xjOn, 
k,m=l 

dyiYj = c-18 -I £ R~iikyk dym + (6-1 _ ~3-1 _ 1)(yi dyj - yiYjrln), 
k,m=l 

dxiYj c -1 = RmjY dxm -t- (3 - 1)xi dyj ,  
k,m=l 

n 

dyixj  c~ Z " -  ij = (R )kmXk dym. 
k.m=l 

Recall that by Proposition 4(iii) the FODC Fi z of  Z is inner. It turns out that none of  the 

three other FODC F f ,  F f ,  F4 z is inner. Indeed, from the above commutation rules one 
easily derives that 

Ff:OnYi =3-1yiO, ,  F~: Onxi =xiOn, F ~  :Onyi =yiOn (48) 

for all i = 1 . . . . .  n. Further, for all four FODC Fj. z we have On = -6rln and this is up to 

complex multiples the only left-invariant one-form o f / ~ z .  Therefore, we conclude at once 

from (48) that none of  the FODC F S ,  j = 2, 3, 4, of  Z is inner. 

All four left-covariant FODC Fj z of  Z depend on the group-like element Zn ~ A °. It 
can be freely choosen such that it satisfies the conditions (31) and (32). This dependence is 
reflected by the appearance of  the parameter 8 = (Z, ,  u n) in the above formulas. For the 

FODC F f  a distinguished choice of  Zn is Zn = (/2") 2. In this case T f  is just the sum 
of the quantum tangent spaces T x and T y considered in Sections 2 and 3 and the FODC 
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Fl z might be thought as gluing together the FODC F x and F y.  Further, if we assume in 

addition the conditions (11) and (23), then we have c~ = y c  -2 = ~ - 1, fl = yc  2 = ~-I  _ 1, 

and 6 = c -2, so that y~ + 1 - ~ = ff~-I + 1 - ~-I  = 0. Thus, in this case the first two 

relations for the FODC FI z in Proposition 4(i) become even linear. 

5. Application to the quantum homogeneous space GLq (N) /GLq (N - 1) 

u i In this section let ..4 denote the Hopf algebra O ( G L q  (N)) ,  u = ( j )i,j = I . . . . . .  V the funda- 

mental corepresentation of  .A and R the corresponding R-matrix given by (see [5]) 

"" ^ i j  
RJ~ =--- Rkl : =  q6ii~il~.ik + (q  - -  q - I l O ( j  - i )6 ik~ . i l ,  i, j ,  k, l = 1 . . . . .  N. (49) 

The Hopf algebra .A is coquasitriangular with universal r-form r determined by 

r(u.i, u~) ^ki = R j t ,  i , j , k , l = l  . . . . .  N.  (50) 

Further, we suppose that Zn is a monomial in the main diagonal L-functionals li i i  . 

Using (49) and (50) one easily verifies that the above assumptions (8), (10), (11), (19k 

(21)-(23) and (29)-(32) are then fulfilled with n = N, u = - f f  = q - 2 - 1 ,  fl = - y = q 2 - 1, 

c = q and Yi = q2i. Therefore, all results obtained in Sections 3-5 are valid in this case,. 

Here we shall add only a few remarks concerning these results rather than restating them in 

the present situation. The quantum homogeneous space X is then, of course, isomorphic to 

the quantum vector space O(Cq N) [6, Proposition 9.11 ]) and the FODC F X is one of the two 

well-known covariant calculi on C9 (Cq N) discovered in [ 11,17]. However, the approach given 

in Section 2 might still be of interest. The FODC F/z, j = 1, 2, 3, 4, developed in Section 4 

i and are left-covariant FODC on the subalgebra Z of A generated by the element xi = u N 
Yi -~ S(uN),  i = 1 . . . . .  N. All four FODC have the property that F J  as a left Z-module is 

generated by the differentials dxl . . . . .  dxN, dyl . . . . .  dyN. The FODC 1-'1 z described by 

Proposition 4 is inner. In the special case Zn = (l,, ")2 it coincides with the distinguished 

calculus considered in [ 16] (more precisely with its left-covariant counter-part). 

The importance of  the left quantum space Z stems from the fact that it is (isomorphic 

to) the quantum homogeneous space G Lq ( N ) / G L q  (N - 1). Indeed, there is a unique 

surjective Hopf algebra homomorphism ~r : G Lq (N)  --~ G Lq (N - 1) such that 

7r(uii)=u,i,  i . j =  1 . . . . .  N - 1 .  

zr(Ulv) = : r ( u N ) =  O, i : 1  . . . . .  N - l ,  rr(uN) = 1, 

where w~, i, j = 1 . . . . .  N - 1, denote the matrix entries of  the fundamental matrix for the 

quantum group G L q ( N  - 1). Then the set 

O ( G L q ( N ) / G L q ( N -  1)) :=  {a c O ( G L q ( N ) ) :  (id Q Jr)o A(a) : a ® 1} 

of  all right GLq (N - l)-invariant elements of  O ( G L q  (N))  is a subalgebra and a left quantum 

space for O ( G L q ( N ) )  with respect to the coaction A [O(GLq ( N ) / G L q ( N  - 1)). The ele- 

ments xi and Yi are in O ( G L q ( N ) / G L q ( N  - 1)), so that Z c O ( G L q ( N ) / G L q ( N  - l)). 
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If  q is not a root of  unity, then we have the equality Z = 0 (GLq (N) / G Lq (N - 1)). (For the 
corresponding right quantum space GLq (N - 1)\GLq (N) this is proved in [8, Proposition 

4.4], or [6, Section 14.6]. The proof for the left quantum space GLq (N) /GLq  (N - 1) is 

completely analogous.) 
Suppose now that q is a real number and q # 0, -4-1. Then it is well known that the Hopf  

algebra O ( G L q ( N )) is a Hopf  * - algebra, denoted by O (Uq ( N )), with involution determined 

by (u~)* = S(u{), i, j = 1 . . . . .  N. Further, the algebra O ( G L q ( N ) / G L q ( N  - 1)) is 

a , -subalgebra such that x/* -- (u%)* = Yi =- S(u N) and a left , -quantum space for 

O(Uq (N)). It is denoted by O(Uq (N)/Uq (N - 1)) and called the coordinate , -a lgebra 
of  the quantum sphere associated with the quantum group Uq (N). In this case the two 

left-covariant FODC/- ' l  and F4 of O(Uq (N))  and hence their induced FODC F f and F4 z 
on Z = O(Uq(N) /Uq(N - 1)) are ,-calculi.  We prove these assertions for Fl and F f .  

First note that (Ifi)  * = S ( l y )  (see [6, formula (10.47)]) for the corresponding involution 

of the Hopf  dual O(GLq (N)) °. Hence we obtain X~v = XN and X* = (17NIN N ZN)* = 
- N  + i  Zul  N S(l N ) for i = 1 . . . . .  N - 1. Since ZN is a monomial  in the L-functionals l y ,  
- N  + i  Zul  u S(1N ) is a complex multiple of  S(l+i)lNNZN ----- E .  Therefore, we have X* ~ T f  

for all X c T f ,  so that F z is a , -ca lculus  of O(Uq (N)) by Proposition 14.6 in [6]. Since Z is 

a , -subalgebra of O(Uq iN)),  the induced FODC F1 z and FI z is also a ,-calculus. Thus, the 
FODC F~ z and F~ are ,-calculi on the coordinate *-algebra Z = O ( Uq ( N ) / Uq ( N - 1)) 

of the quantum sphere. Note that because these FODC are ,-calculi  it suffices to prove only 
one of the commutation relations for dxixj and dyiYj and one of the relations for dxiyj and 
dyixj.  The two others follow then by applying the involution and inverting the corresponding 
R-matrix. The FODC F z and F3 z are not ,-calculi  on Z ,  but one has (Tez)* = ~ z .  

Let us retum to the general case where q is a complex number such that q # 0, i 1. From 

its very construction it is clear that the left-covariant (2n - 1)-dimensional FODC FI of  

the Hopf  algebra O(GLq (N))  is a useful tools for the study of the induced FODC F f  on 
the subalgebra Z .  However, / '1 is not suitable as a FODC of the Hopf  algebra O(GLq (N)) 
itself, because the generators Xi, Yi of the quantum tangent space T z are only supported 

on the last row and column of the fundamental matrix u = (u j) .  To remedy this defect, 

one can construct an N2-dimensional left-covariant FODC F on A = O(GLq (N)) that 

induces the FODC F f  on Z as well. We restrict ourselves to the distinguished calculus 
/-'1Z with Zn = ( l n n )  2. Let T be the linear span of linear functionals 

Si j = (q-2 _ 1)- l lZJl fJ ,  i < j, 

Yji = (q2 _ 1) - lS ( l? i ) l ; j ,  i < j, 

Xii = (q-2 _ 1)-1 ((i/-i)2 _ ~), Yii = - q - 2 X i i  

(51) 

(52) 

(53) 

on ..4. For i < j ,  i, j = 1 . . . . .  N, we then have 

- ® = ® l / l ;  j ,  
k<_j 

(54) 
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-- 6 @ Yji = ~ Yjk @ S(l£-i)17 j, A(Yji) (55) 
k<_j 

Thus, by Lemma 1, there is a left-covariant FODC F of  A which has the quantum tangent 
space T.  From the explicit form (49) of  the matrix ,~ and its inverse/~ - I = (q _ q - I ) [¢ + I 

we compute 

(Xij, u r )  = ~ir~js and (Yji, S - I ( u S ) )  = ~i,-~j, for /  _< j .  (56) 

Setting Oij :=  o)(u}) = y ~ , k S ( u ~ ) d u ~  and rlji : =  ( . o ( S - I ( / g / ) )  = Zk/ /~  dS '(u~) for 

i < j ,  the formulas (6) and (56) imply that 

(Xi.j,  Ors) ~- (Yii ,  T]sr) = ~ir~js for i < j ,  i, j ,  r, s = 1 . . . . .  N .  (57) 

In particular, the functionals Xi j  , Yrs, i < j ,  s < r,  are linearly independent, so that the 
• • ' 9  

FODC F has dimension N-.  Further, it follows from (6) and (57) that the sets IOij, ~b-,, i :~ 

j , s  < r} and { X i j ,  Y r s ; i  < j , s  < r} and also the sets {0 U , r h . s ; i  < .j,s < r} and 

[ X i j ,  Yrs: i < j ,  s <_5 rJ are dual bases of  invF and 7-, respectively• It is not difficult to 
2 

verify that the two calculi F and Fl with Z,, = (/,7") 2 of,A induce the same FODC FI ~ on 

the quantum space Z.  

For j = 1 . . . . .  N, let Tj denote the linear span of functionals X i j  and Eji, i ~ j .  From 

(54) and (55) we conclude that there is a (2j  - 1)-dimensional left-covariant FODC F j on 

O ( G L q  ( N ) )  which has the quantum tangent space ~ .  The FODC F x is nothing but the 

FODC F1 developed in Section 4 (as always throughout this discussion, with Z,, = (l,7") 2 ). 

Since the linear quantum tangent space 7- is the direct sum of vector spaces Ti . . . . .  TAr, 

the FODC is the direct sum of FODC F t . . . . .  F x . These and other properties indicate that 

the FODC f i is a promising tool for the study of  the interplay between the quantum group 

G L q ( N )  and the quantum homogeneous spaces G L q ( j ) / G L q ( j  - 1), j = 2 . . . . .  N. The 

FODC F is only left-covariant, but not bicovariant. However, because of its particular and 

simple structure the FODC F might be even more important and useful for appliations and 

computations than the bicovariant calculi of the Hopf algebra ( 9 ( G L q  ( N ) ) .  We shall return 

to this matter in Section 7. 

At the end of  this section, let us briefly turn to the quantum group S L q ( N ) .  The Hopf 

algebra (_9(SLq (N)) is also quasitriangular with universal r-form r such that 

,.(.}, ^ki = z R ) l ,  i, j , k ,  1 = 1 . . . . .  N ,  (58) 

where /~ is given by (49) and z is a complex Nth root of  q 1. Then the linear span of 
functionals X i j ,  Yji ,  i < j ,  and Xrr ,  r = 2 . . . . .  N ,  defined by (5 I)-(53) is also the quantum 
tangent space of  a (N 2 - 1)-dimensional FODC o n  (Q(SLq (N)). It should be emphasized 

that because of  the appearance of  the number z in (58) the equalities (56) are no longer valid 
for (Q(SLq (N)). Some (N 2 - 1)-dimensional left-covariant FODC o n  (Q(SLq (N)) with 

reasonable properties have been constructed in [ 14]. This FODC is different from those in 

[14], but is based on a similar idea. 



42 K. Schmiidgen/Journal of Geometry and Physics 30 (1999) 23--47 

6. A lef t -covariant  F O D C  on GLq ( N ) / G L q  (N - 1) induced f r o m  a b icovar ian t  

F O D C  on GLq (N) 

In this section we retain the notation of Section 5. Let I"bi be the bicovariant FODC on 
,A = O( G Lq ( N ) ) constructedby the bicovariant bimodule ( uC ®u, L + ® L-'C). (Details can 

be found, for instance, in [6, Sections 14.5 and 14.6]). Here we only need the two facts (see 

[6, 14.6.3 andExample  14.8])thatthe set {too :=  w(uj)  = )--~k S(u~)du) ,  i, j = 1 . . . . .  N} 
is a basis of  the vector space inv(ff'bi) of  left-invariant one-forms of/-'bi and that the com- 

mutation rules between the forms toij and an element a ~ A are given by 

+ i  - s  toija = y~a( j ) t r  (a(2))S(lj )(a(3))COrs. (59) 
r , s  

Proposi t ion 5. The FODC /'hi induces a left-covariant FODC 1 -'z on the quantum space 

Z such that 

dxixj = q Z ^ij RkmXk dxm, dyiYj = q-1 Z ( / ~ - I  )mkY dym, 
k,m k,m 

dxiYj = q - I  ^-1 ki Z ( R  )mjYkdXm dyixj q y ~  "ij , = RkmXk dym, 
k,m k.m 

" ij ) " where Rkm :=  r(SZ(u ), UZm), i, j ,  k, m = 1 . . . . .  N. Further, we have t ouuXi  = q2xiO)UN 

and tONNYi = q-ZYitoNN for  i = 1 . . . . .  N. 

Proof We verify, for instance, the third commutation relation. From the explicit form (49) 
of the matrix/~ it follows that ( /~- l ) IN = q - J  & N & N for s, l = 1 . . . . .  N. Using essentially 

this fact and formula (59) we compute 

dx, 
k 
~-~ i m +k UkS(U j )(l  r , S ( u l  ) ) ( S ( I ; S ) ,  S (uN))o)rs  

k,m,l,r,s 

= S(u~)u r (R )mj q2N-2lq-16sN&Ntors 
r,s,l k,m 

Z q - 1  ^ -1  ki N m = ( R  ) m j S ( u  k )u  r tOrN 
k,m,r 

-1 ~-1 ki = q (R )mjYk dxm. 
k,m 

The other relations follow by similar reasonings as above or as used earlier. We shall not 
carry out the details. [] 
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The FODC F z is another good candidate of  a reasonable differential calculus on the 

quantum homogeneous space Z.  It is a .-calculus if q is real and the involution of Z is 

given by x* = Yi, i = 1 . . . . .  N ,  because the FODC Fbi on O ( G L q  ( N ) )  is known to be 

a .-calculus with respect to the involution (u].)* = S(u{ ) ,  i, j = 1 . . . . .  N .  But there is 

a striking difference between the two distinguished calculi F z and FlZ : Fl z is inner, 

while F z is not. In order to verify the latter, it suffices to note that ~ONNXi -- XiCONN = 

(q2  _ 1)XiCONN is  obviously not a multiple of dxi. 

7. A recipe for the construction of left-covariant FODC 

The first order differential calculi on quantum homogeneous spaces developed above are 

induced from left-covariant calculi on the quantum group. All these left-covariant calculi on 

the corresponding Hopf  algebra are built by the same simple recipe that will be elaborated 
more explicitly in this section. As always, A is a coquasitriangular Hopf  algebra and 1ji 

are the L-functionals on .4 with respect to a fixed corepresentation u i = (uj) i , j=l  ..... n of~4. 
Throughout this section we retain assumption (19). 

Let i, j 6 {1 . . . . .  n} be two indices such that i < j and let Z be a group-like element of  
A C'. Define 

X + =. l + i l - i Z  r "i - '  r = i + l  . . . . .  j ,  and X + Z - e ,  

X , S = l r ' J l f J z ,  r = i  . . . . .  j - l ,  and X ] - - - z - e ,  

Y + = S ( I f r ) l f J z ,  r = i  . . . . .  j - l ,  and ~ = Z - e ,  

Y Z = S ( I j ) I S Z ,  r = i + l  . . . . .  j ,  and Y . - - - - Z - e ,  

T i ~ ( Z  ) ---Lin{Xri; i < r _< j}, 

~ ( Z )  ---Lin{Y~; i < r < j}. 

Using (19) one easily verifies that each vector space 7- = T i ; ( Z  ) has the properties that 
X ( I )  = 0 and A(X) -- e ® X E 7- ® .A ° for all X ~ T.  Hence, by Lemma 1 each space 

(Z),  Tj~ (Z) is the quantum tangent space of a left-covariant FODC F/~, Fj~ on .A. Let u s  

call the first order calculi of  the form F/~, Fj~ elementary  FODC. All left-covariant FODC 

on .A occurring in this paper are diret sums of elementary FODC (with possible different 

group-like elements Z !). By forming sums of  elementary FODC one gets a large supply of 

left-covariant FODC which have a very simple structure and are easy to handle. FODC of 
this form have been introduced in [13]. Note that the commutation rules of  the elements 
of  the quantum tangent spaces obtained in this manner are not necessarily quadratically 
closed and that the dimensions of  the spaces of  higher forms may be different from the 
corresponding classical dimensions (see [ 13] for such examples). 

For the group-like elements Z one may take, for instance, a monomial  in the main diagonal 
L - f u n c t i o n a l s  l y ,  i = 1 . . . . .  n. Interesting choices of  Z are, of  course, Z = l~  i for T,.~ (Z) 
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and Z = l?  i for T//~(Z) or Z = -3 i j e ;  for all four FODC. Let us illustrate this by simple 

examples and set 

= 7 - +  + i  T +  Z in (li ) = L in{ l ;  i -- 8ije; i < j ,  i, j = 1 . . . . .  n}, 
i 

+ - j  
7--- • ~ ~lj  (lj ) = Lin{17 j - ~ijE; i < j ,  i, j = 1 . . . . .  n}, 

J 

7-+=  Z Tj+( l f  j )  = L i n { S ( l f  i) --3ijE; i ~ j , i ,  j = 1 . . . . .  n}, 

J 
- + i  T_ = E L i  (1 i ) = Lin{S(17 j )  - c~ij6;i < j ,  i, j = 1 . . . . .  n}. 

i 

Then, 7-+, 7 - - ,  7-+, 7-_, 7-+ ÷ 7-_ and 7 - -  + 7-+ are quantum tangent spaces of  left-covariant 

FODC on ,A. 

Now we want to be more specific and suppose that ,A is one of  the Hopf  algebras O(Gq ), 
Gq = G Lq (N) ,  SLq (N) ,  Oq (N) ,  Spq (N) ,  and u is the fundamental corepresentation. 

Case 1. ,A = 0 (G L q (N)) .  Then the vector spaces 7 -+ + 7-_ and 7 - -  + 7-+ defined above are 

the quantum tangent spaces of  two N2-dimensional  left-covariant FODC on O ( G L q  (N)) .  
It is easily seen that the commutation relations of  the elements of  both quantum tangent 

spaces are quadratically closed. Further, it can be shown that the dimensions of  the spaces 

of  k-forms for the associated universal higher order differential calculi (see [6, 14.3], for 
N * this notion) are (k-)  as in the classical case. 

Case 2. A = (Q(SLq (N)) .  In this case, T + + T_ and T -  + T+ are also N2-dimensional  

FODC on O ( S L q ( N ) ) ,  but we are interested in FODC that have the classical group di- 

mension N 2 - 1. It is rather easy to construct such an FODC: Let Tod be the sum of  
+ 

~,~ (e), Tl~- (e), i = 1 . . . . .  n, and let Tmd be the vector space spanned by N - 1 of  the N 

f u n c t i o n a l s  l? i - ~. Then, T = Tod + Tmd is the quantum tangent space of an (N 2 - 1)- 

dimensional FODC on O ( S L q  (N)) .  This first order calculus strongly resembles the ordinary 

differential calculus on the Lie group S L ( N )  in many aspects. But it has the disadvantage 

that the commutation rules between elements of the quantum tangent space (for instance, 
N + N  ~N l+i'i 1-i and l~ l N ) do not close quadratically. (N 2 - 1)-dimensional FODC on (_9 (SLq (N)) 

that do not have this defect have been constructed in [14]. However, using the same idea 

as in [14], the quantum tangent space T can be modified by multiplying the secondary 

diagonal elements such that commutation relations close quadratically. 

In order to be more precise, let f i  and gi, i = 1 . . . . .  N,  be monomials  in the main 
+i  - i  diagonal L-functionals l?  j .  Let Tod be the linear span of  Xij  :=  l) I i fi and Xji  : =  

l T J l f J g j ,  i < j ,  and let Tmd be an (N - 1)-dimensional vector space generated by func- 

tionals of  the form f - e, where f is a monomial  i n  [i 5:i , i = 1 . . . . .  N .  Suppose that 

f i ,  gi E Ce ~ 7-rod for i = 1 . . . . .  N. Then one easily verifies that T :=  Tod + Tmd is the 
quantum tangent space of  an (N 2 - 1)-dimensional FODC o n  O(SLq (N)).  Further, the 
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commutation relations for elements of T are quadratically closed if and only if f/ I gi (l i+i )_" 
is independent of i = 1 . . . . .  N. (This assertion and the explicit form of commutation rules 

+ ± RL~L~ and L I L + R  RL+L~ using can be derived from the relations L 1 L 2 R = = 

(49). We omit the details.) These conditions can be fulfilled as follows: Fix an index k E 

{ l . . . . .  N} and set gi : (IZ i ) 2 (l;k)2 and 3'i' = e for i = 1 . . . . .  N. Another possible choice 

is fi : (l+i)2(Ikk) 2 and gi ---- e for i = 1 . . . . .  N. These two special cases are in fact the 

two FODC Fj and F2 constructed in [14]. 

In order to come into contact with the considerations in Sections 4 and 5, we carry out 

the same consideration based on the generators Xi-, Y+ rather than X +, X i .  We suppose 

that the elements fi, gi and the vector space Trod satisfy the assumptions stated in the 

first half of the preceding paragraph. Now let Tod be the vector space generated by the 

functionals X j i  = l)-ili+i fi and X i j  = S(l+i)l;J gj, i < j. Then 7- : :  Tod + Trod is 

again the quantum tangent space of an (N 2 - 1)-dimensional FODC on O(SL, I (N)). The 

commutation relations for 7- close quadratically if and only if figi (1 +i)2 does not depend 

o n /  = 1 . . . . .  N. 

C a s e  3 : .,4 = O(Oq(N)) and .A = O(Spq(N)). In this case the fundamental matrix u 

fulfills the metric condition 

u C u t C  - I  = C u t C - l u  = I (60) 

and the R-matrix is given by 

^ j i  
Rmn : qaij-aiJ' ~i,nt~jn 4- (q - q - I ) o ( i  - m)(~jm~in  - 6 C /  C~t) ,  (61) 

where i '  :=  n + 1 - i, E = 1 for Oq(N), E : - 1  for Spq(N) and C = (Cj) is the 

corresponding matrix of the metric (see [5] or [6] for details). We shall essentially use the 

fact that Cj = 0 if i ¢ j ' .  

Before we turn to the construction of the FODC, let us look for a moment at the "ordinary" 

first order calculus on the Lie groups O(N) and Sp(N). Then the matrix 

0 = S(u)  d u  = (Oij =-- s(uik)duj)i,j=l ..... N (621 

k 

satisfies the relation 

= -C-IOC,  i.e., Oji = -(C-I)i,Oi,j'CJ ' fori ,  j = 1 . . . . .  0 r N. (63) 

We briefly sketch the proof of this well-known fact. Indeed, differentiating the condition 

u t C -  I u = C -  I, we obtain 

d u t C - J u  + u t C  -1 du -:  0. (64) 

From C u  t C -  I U : I we get C -  I S(u) : u t C-J  and so u t C -  1 du = C -  10. For the metric C 

of the Lie groups O iN)  and Sp(N) we have ( C -  1)t = E C -  t. Hence the relation C -  i S ( u )  = 

utC -1 implies that C - l u  = S(u) tC -1. Because functions and forms commute (!) for the 

classical differential calculus, we can write du t C -  I u = ( S ( u )  d u )  t C - J  = 0 t C -  I. Inserting 

these expressions into (64) we obtain (63). 
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For the construction of  the left-covariant FODC we shall restrict ourselves to the quantum 

group Oq(N). In the case of  Spq(N) one has to omit the elements Xii supporting the 

secondary diagonal entries u I, in order to be in accordance with the ordinary calculus on 

the classical group Sp(N). The remaining parts are verbatim the same. 

Let us abbreviate I :=  {(i, j )  : i '  < j ,  i, j = 1 . . . . .  N}. Then the elements u} with 

(i, j )  ~ I are precisely those entries of  the matrix u that are below or on the secondary 

diagonal. Now we define 

l + ,+J ' ,+J '9  j ,  Xji  := IZ J J l j  and Xij :=  t i, t j, z.j, for < i < j ,  i, j = 1 . . . . .  n, 

where Zj and Z j, are group-like elements of  the Hopf dual 0 (Oq (N)) °. These functionals 
i such that ( i , j )  E I a n d i  # j .  Ino rde r  to separate Xji, Xij separate the elements uj 

also the entries ui,, i '  < i, we choose group-like elements Yi, i I < i, of O(Oq(N)) ° such 

that 

(Yi - 8, u r) : t~rs~ir for (r, s) ~ I, i '  < i, 

and put 

X i i : : Y i - 6  f o r / ' < / ,  i = 1  . . . . .  N. 

(65) 

Further, we suppose that 

Zj, Z j , ~ L i n { Y i ; i '  < i }  f o r j ' < j .  (66) 

Then the vector space 7" = Lin{Xrs; (s, r) E I} is the quantum tangent space of  a left- 

covariant FODC F on O(Oq(N)). From the construction and the explicit form of the 

matrix R it is straightforward to check that (Xrs, u)) ~ 0 if and only if (r, s) = (j, i) for 

arbitrary indices (s, r) e I and (i, j )  e I .  This implies that the FODC F has the dimension 

N ( N  + 1)/2 and that the elements Oij • O)(U}), (i, j )  E I ,  form a basis of  the space of  

left-invariant one-forms inv_F'. These facts are in accordance with the ordinary first order 

calculus on the Lie group O(N). Note that the FODC F just constructed depends on the 

group-like elements Zj, Zj , j '  < j ,  and Yi, i t < i, of (9(Oq(N)) ° which can be freely 

chosen such that they satisfy the assumptions (65) and (66). These conditions can be easily 

fulfilled by taking monomials in the main diagonal L-functionals l~ i . We make all that more 

explicit by an example. 

Example. 

XI5 

X35 = l ~ l l ? l Z l ,  X45 = l + l l l l Z l ,  

X24 = I+2122Z2, X34 = 1+2122Z2, 

X51 =I+51;Sz5, X52 = l+5155Z5, 

X53 = 1+5155Z5, X54 = l+5155Z5, 

X42 = I~4144Z4, X43 = I~4144Z4, 

O(Oq (5)). Then the 15 generators of  the quantum tangent space 7" are 

=I+II l IZ1,  X25 = I+I l l lZI ,  
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X33 -~- Y3 - 6, X44 : Y4 - e, X55 : Y5 - 

and  a s s u m p t i o n  (66) m e a n s  tha t  Z l ,  Z2, Z4,  Z5 c Lin{Y3, Y4, Y,s}. 
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